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Abstract: - This paper is concerned with queueing systems showing how to derive their characteristics
if the requirement arrivals correspond to a Poisson process and the service times have the exponential
distribution. However, the requirements of stationarity, regularity, and independence of increases
needed to model these processes by Markov chains and to define the transition probabilities may not
be satisfied, or no information may be available on such parameters. Using randomly generated data,
we propose a strategy of processing the requirements in multichannel systems and a way of evaluating
the probabilities necessary to express the characteristics of the systems comparing these results with
the theoretical ones.
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1 Introduction

The Danish mathematician A. K. Erlang formulated 1.1 Classification of Queueing Systems
the fundamentals of the queueing theory about The queue is usually understood in the usual FIFO
hundred years ago, the further development of the sense — first in, first out), but a LIFO operation (last
theory is mainly associated with the Russian in, first out) is also possible, which is also referred
mathematician A. N. Kolmogorov, but its current to as a LCFS (last come, first served) strategy.
classification was proposed by the Eng“sh Besides the FIFO and LIFO SerVice, we can also
mathematician D. G. Kendall. All details may be meet random selection of requirements from the
found, e.g., in [1], [2], [3], [4], [6], [7]. queue to the service system (SIRO - selection in
Generally, at random moments, customers random order) and service managed by priority
(requirements) enter the system and require requirements (PRI - Priority).
servicing. Service options may be limited, e.g., the The queue length may be limited by rejecting
number of service channels (or service lines). If at additional requirements if a certain (predefined)
least one serving line is empty, the demand entering number of requirements is achieved, such as the
the system is immediate|y processed_ However, the number of reservations for the book in a Iibrary that
service time is also random in nature because the is currently checked out or (virtually) unlimited.
performance requirements may vary. If all service The requirements in the queue may have limited
lines are busy, then the requirements (Customers) or unlimited patience. In the case of unlimited
must wait for their turn in a queue for the processing patience, requirements wait for their turn while in, a
of previous requirements, or be rejected (e.g. a system with limited patience entering the queue
telephone call). significantly depends on the queue length. Instead of
Service lines are frequently arranged in parallel, the queue length the concept of system capacity
e.g., at the hairdresser's where customers waiting for may also be used, which means the maximum
a haircut are served by several stylists, or at a gas number of requirements that may be present in the
station, where motorists call at several stands of system.
fuel. However, there is a serial configuration of the In 1951, Kendall proposed a classification based
queue system. on three main aspects in the form A/B/C, where
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Here, we restrict our considerations on systems
of the form A/B/C/D/E/F, where
A characterises the probability distribution of

random variable period (interval) between the

requirement arrivals to the system,

B the probability distribution of random variable
service time of a requirement,

C is the number of parallel service channels, in the
case of "unrestricted" (i.e. very large) number of
channels is usual to express the parameter C by
.

As already mentioned, the system can be
characterised by a larger number of features, so
Kendall classification was further extended to the
form

A/B/C/DIE/F,

where the meanings of the symbols D, E and F are

as follows:

D integer indicating the maximum number of
requirements in the system (i.e. the capacity of
the system), unless explicitly restricted,
expressed by oo,

E integer expressing the maximum number of
requirements in the input stream (or in a resource
requirements), if it is unlimited, o is used,

F queue type (FIFO/LIFO/SIRO/PRI).

Let us first assume that parameters A and B
equal to M, i.e. intervals between the arrivals of
requirements and requirement-service-time are
mutually stochastically independent and have
exponential distribution, this means that the input
stream represents a Poisson (Markov) process, that
satisfies the following properties:

(1) Stationarity (homogeneity over time) - the
number of events in equally long time intervals is
constant.

(2) Regularity - the probability of more than one
event at a sufficiently small interval of length At is
negligibly small. This means that in, the interval
(t, t+At), there is either exactly one event with
probability A At or no event with probability 1-4 At.
In other words, in a Poisson process, the only
system transition to the next "higher" state is
possible or the system remains in the same
condition.

(3) Independence of increases - the number of
events that occur in one time interval does not
depend on the number of events in other intervals.

2 The M/M/1/1/o/FIFO System
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Consider first the situation at the input separately
from the service process and introduce the random
variable number of requests that come into the
system during the interval (t, to+At), where
At e (0,0). Due to the stacionarity of the Poisson
process, number of requests does not depend on the
choice of initial time t, and the importance it has
only considered the length of the interval At.

Let pi(t) denotes the probability that at time t just
k the requirements are in the system. The regularity
of the Poisson process implies that the probability
that at time t+At k requirements will be in the
system is equal to the probability that at time t k-1
requirements were in the system and during At one
requirement came with probability 1 At or at time t
k requirements were in the system and during At
with probability 1-1 At any new requirement did not
come. From the rules for calculating probabilities of
conjunction and disjunction of independent events
then we get the equation:

P(t+AL) = pea(t). 1AL+ pet).(1-2 AY), k= 1,2, ...(1)

The probability that at time t+At no requirement
is in the system is given by the probability that there
was no requirement, nor during time At entered, is

Po(t+At) = po(t).(1-1 At) )

After the easy adjustment of equations (1) and
(2) we get equations (3) and (4).

Py (t+ At) — py (1)

=4 Pra(t) =4 pe (),

At (3)
k=12,..
Po(t+At)—po(t):_ﬂv 00 (1) ()

At

Make now limit transition in equations (3) and
(4) for At — 0. We get:

lim Pk (t+AD - pe (V) _

At—0 At

= 1lim A p_1 () -4 pe (1), k=12,...
At—0

lim PoEHAD—po(®) _ (4 po ()
At—0 At At—0
The expressions on the left side of the previous
two equations are derivatives of the functions p(t)
and po(t) at point t, i.e. p’(t) and po’(t), while their
right sides the limit transition has no effect. Hence
we obtain recurrence equations (5) (6)

pk'(t)z/?“ pkfl(t)_/l pk(t)! k=1!2!"' (5)

Po’ (1) =—4 po () (6)

These recurrence equations are a set of infinitely
many ordinary differential equations of the first
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order. To solve them we need to know the initial

conditions. However, it is clear that at time 0 no

requirements are in the system, and therefore
p(0)=0, k=12,.. ()

Po(0)=1 (8)

From the theory of ordinary differential

equations is known that the solution to the system of

equations (5) and (6) with initial conditions (7) and
(8) is a system functions

k
pk(t)=e‘”“t%, k=012,.. 9)
Specially for k=0 we get
po(t)=e~* (10)
Pl
)

sk | prlf)=e”
o4k

ozt

Fig. 1: Graphs of functions py(t) for k=0,1, ... , 5
and 1=2.

From equation (9) we can see that in the M/M/1
system, the random variable number of requests that
come into the system during a time interval of
length t has a Poisson distribution with parameter
At

The mean of this random variable is At and
specially for t=1 the mean value of the random
variable number of requests that come into the
system per unit of time is equal to A. We say that 4
is the mean intensity of the input or shortly the input
intensity and it expresses the average number of
requests that came into the system per unit time.

We show further that the random variable
interval between arrivals of requests has an
exponential distribution. Denote the variable T.
Then the probability that after a request no further
requirement for the entire time interval t entered into
the system is equal to po(t), and therefore, according
to equation (10)

P(T >t)=py(t)=e (11)
From here we obtain the distribution function
F(t) of the exponential distribution with parameter
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F(t)=P(T <t)=1-P(T >t)=1-e* (12)
The mean value of the random variable T

representing the average time between two
consecutive requests is
E(T)=1/2 (13)

Analogously, we can now examine the service
process. We assume that the random variable
service time of one requirement (shortly service
time) has an exponential distribution. Denote the
distribution of this parameter g, generally ¢ = A.
Mean value of the random variable service time Tg
is

E(To)=u (14)
and parameter u indicates the mean number of
requests served per time unit of work time channel,
briefly mean service intensity, service intensity
shortly.

To derive the characteristics of the system is
more convenient to describe the system activity by a
graph of system transitions. The nodes of the graph
represent states and directed edges transitions from
one state to another, and evaluation of these edges is
described by the probability of transition from one
state to another. State S, for fixed te(0, ), thus
more exactly S,(tf) is a random variable and
indicates that at time t n requests are in the system.
If exactly n requirements, n>1, are in the system
M/M/1 / o / w / FIFO, then one is operating in a
single line system (service channel) operated and
the remaining n-1 are waiting in the queue.
Transitions between states which differ in a number
of requirements in a system can be understood as a
process of birth and death, where the request birth
represents request entry into the system and death
corresponds to request leaving from the system after
finishing its operation. For given input assumptions
the Poisson stream of requests with a parameter 1
and an exponential distribution of service time with
parameter g it is possible the queueing system
behaviour describe by the Markov processes.

Due to the regularity, have sense only transition
probabilities P(Si— S;), where either i=j or i and j
differ by 1 For example transition probability
P(So—Sp) corresponds to the probability of the
event that during the time interval of length At no
requirement enters the system, transition probability
P(Sx— Sk_1), k=1, is the probability of the event that
during the time interval of length At no requirement
enters the system and at the same time one request
will be served and leaves the system, transition
probability P(S¢—Sy), k=1, is equal to the
probability of the event that during the time interval
of length At no requirement enters the system and
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also no requirement enters the system leaves the
system or during this interval one requirement
enters and one requirement will be served and one
requirement leaves the system.

From the regularity property and the method of
calculating the total probability resulting from the
partial probabilities of conjunction and disjunction
of independent events we get transition
probabilities, in the neglect of the powers of the
interval length At, as follows:

P(So— So) = 1-1 At (15)
P(So—Sy) = A At (16)
P(Sk— Ske1) = (1-A At) At = pAt—2A AU
UuAt (17)
P(Sk— Si) = (1-A At) (1—uAt) + A At At =
=1-uAt-A At + 20 u AP U 1-(A+1) At (18)
P(Sk—> Sis1) = A At (1-pAt) = LAt — A At U
UA At (19)

Equations (17), (18) and (19) are satisfied for k=
1.2, ...
Graph of M/M/1/c0/o0/FIFO system transitions is
shown in Fig. 2. For simplicity, nodes are indicated
only by numbers instead of symbols S;. Instead of
the general denotations of transition probabilities,
we write the specific expressions determined by
equations (15) - (19).

P(Sc—}Sc)

P(Sl—}Slj

P(S:—}.S:)

P55  P(5:—>5)
P(S;1—5:) P(5:—5 ;)
P(S,::_ 1—)3 ,:;j

P(S—)S = 1)

P(Sp—=55)

(S_::_ 1—>S _:;)

Fig. 2: Graph of M/M/1 / o / « / FIFO system
transitions.

Using the transition probabilities between states
we can determine the probabilities pc(t) indicating
that at time t exactly k are in the system, however
not separately for entries and services, but together

Po(t+At) = P(So— So) + P(S1— Sp) =

=Po(t)-(1-2 At) + py(b). At (20)
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Pr(t+AL) = P(Sy.1— Sy) + P(Sk— Si) + P(Sk+1—> Sk)
= pra(). LA+ py(t).[1-(A+20) At] + praa(t). 1AL,
k=1,2, ... (21)
After the easy modification of the equations (20)
and (21) we obtain equations (22) and (23)

Po(t+At)—po(t)

At ==Apo®+up(t) (22)
Py (t+At) — p (1)
At —lm4ﬂ%%ﬂ+MpM0Q$
+ P (), k=12,..

Make now the limit transition for At —0 in the
equations (22) and (23). We get:

polt+A)—po(t) _
' = lim[-A py(t t
A0 At Jim [=2 po (1) + 4 Py (0]

P (tHAD) = p ()
lim = lim[A t) —
At—0 At At—>0[ Pr1 )

—(A+4) PO+ u P ()], k=12,..

The expressions on the left side of the previous
two equations are derivatives of the functions py(t)
and pg(t) at point t, i.e. po’(t) and pc’(t), while on
their right sides the limit transition does not have
any effect. Hence we get recurrence equations (24)
(25) as follows:

These recurrence equations are a set of infinitely
many ordinary differential equations of the first
order. To address them we need to know the initial
conditions, which are given by the state of a system
at time t,=0. If there are ko, requirements in a system
at time t,=0, then the initial conditions are given by
(26) and (27)

P, (0)=1 (26)
P (0)=0, k=1 k=kg (27)

Hereafter, we assume that A<, ie. Au<l.
Denote the ratio 2/ by y symbol. We call it the
intensity of the system load. Condition (28)

w=2<1 28)
U

is a necessary and sufficient condition for not queue

growing beyond all bounds. This condition also

ensures that after a sufficiently long time since the

opening of a queueing system its situation stabilizes,

i.e. there are limits
lim p(t)=px, k=01,...,
t—>w

and then after a sufficiently long time since the
opening of a queueing system probabilities py(t) can
be considered as constant, i.e.

pi(t) = px = const

(29)

(30)
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Since the derivatives of constants are zero, we
get from this fact and from equations (24) and (25)
infinite set of linear algebraic equations determined
by (31) and (32).

0=—2pg + 4P (31)
0=2pxa—(A+4) P+ 4 Pra, k=12,..(32)
It is clear that (33) is satisfied

P =1 (33)
k=0
We express p; from equation (31) and get
A
p1=; Po =¥ Po (34)

and from (32) we express px for k>2. For k=1 we
get from (32)

1 1
P2 =;[—ﬂ~ Po +(/1+y)p1]=;[—/1p0 +(A+ 1)y pol =

1 A
=—[-Apo +(A+u)—Po]=
u u

A A ) X
=—[-po+—Po+Pol=|—]| Po=¥" Po
7 u u

(35)

and generally for k=1,2, ... equation (36) is satisfied

Pk =¥ po (36)
Now p, remains to be determined. To do this, we
use equations (33) and (36).

zkaZ(l//k Po) =Po zl//k =1 (37
k=0 k=0 k=0

Since the sum in (37) is a geometric series with
quotient y, first element of w °=1 and the sum

b , we get from (37) pg 1 =1, and thus
1-y 1-

Po=1-y (38)
Using (38) equation (36) can be expressed as
P =v (1-y), k=12.. (39)

These equations allow derive other important
characteristics of the M/M/1/w/oo /FIFO system,
which include:

1. Mean number of requirements in the system:
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E(Ng)=ns = Sk py = S Ky @)=
k=0 k=1

=(1—t//)t//ik!//k_1=

==y ky
k=1 k=1

d (<, k1
=)y — Sk ldy =
( l//)t//dwszzll y Ty

TRV I < SR I G 2
=U-y)v kZ:ll// (1 W//dw(l—wj

=(1—w)ww=(l—t//)l// L .

L-y)? L-y)?
A
-y A u-2
MU

(40)

2. Mean number of jobs in the queue (mean queue
length):

ENNg)=n; =D (kK-p =D kpe =D py =
k=1 k=1 k=1

=ng —(L- po)=ng ~[1-L—y)]=ng —y =

v v
=——-[1-(1-w)]== -y = =wn
1y 1-QA-w)l 1y V1o, 7Y

(41)
3. Mean time spent by a job in the system:
_ A
—_n % H 1
E(T,)=t,=—= = =
A A= -1
L-y) /1[1 /IJ H
y7i
(42)
4. Mean waiting time of a job in the queue:
— Ny y
E(Ti)=t; =—= = (43)
A Al-y) ul-y)

5. Mean service time:

1
E(To)=— (44)
y7i
6. Factor of service channel idle time
Ko=po=1-y (45)
7. Factor of service channel load
Ki=1l-po=1-(1-y) = ¢ (46)
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The equations (40)-(43) show that in the system
M/M/1/o0 /oo/FIFO, A= u, respectively w =1 cannot
by satisfied, because this would result in the growth
of the parameters beyond all limits.

3 The M/M/n/n/w/FIFO System
Using similar considerations and denotations as in
the previous section we get

P(Sii—>S) = AAt, k=1, ...,n (47)
P(Sk— S = (1-2 At) (1-Kk uAt) ~

~1- (1 +k ) At, k=0, ... (48)

P(Skii— S0 = (k+1) 1AL, k=0, ..., n-1 (49)

Let pi(t) denote the probability that, at time t, just
k requirements are in the system. Using the previous

equations, we can calculate po(t), pi(t), ..., pk(®), ...,
Pa(t)-
Po(t+At) = P(So— Sp) + P(S1— So) =
= Po(t).(1-4 At) + py(t). At (50)

P1(t+At) = P(So—> S1) + P(S; > S1) + P(S2—> Sy) =
= po(t). AAt + pe(t).[1-(A+w) AL] + pa(t). 2uAtL
(51)

Pr(t+At) = P(Sic1— S + P(Sk—>S) + P(Sk1—Sy)
= Pra(t). AAL+ pi(t).[1-(A+kp) At] +
+ peaa(t). (k+1) puAt, k=2,...,n-1 (52)
However, if all channels are occupied and the
gueue is nonempty, the last equation changes to (7).
Pr(t+At) = pia(t). A AL+ py(t).[1-(A+ng) At] +
+ prea(t). NuAt,  k=>n (53)
After easy simplification of equations (50), (52)
and (53), a limit transition for At — 0 we get a set of
first-order ordinary differential equations. Since the
initial conditions may also be simply expressed, we

can derive that
-1

Z::k " (54)
n
-
Pic =7 Pos k=1...,n-1 (55)
k ~n
pe =2 po. k=n (56)
n! n

These equations may now be used to derive other
important characteristics of the M/M/n/n/o /FIFO
system, which include:

1. Mean number of requirements in the system:

E(Ng)=ng = > k py

k=0

(57)
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2. Mean number of requirements in the queue (mean
gueue length):

E(N¢)=ng =Y (k—n)py (58)
k=n
3. Mean number of free service channels:
_n-1
E(Ng)=n; =Y (n—k)py (59)
k=0

4. Mean time spent by a requirement in the system:

E(Ts):ts = (60)
A
5. Mean waiting time of a requirement in the queue:
— ng
ETe) =ty =— (61)
A
3
1 2 4 6
[l ] i [l ] Il ]
g:l:l 935 913 i 915 923 925 933
a
g 11 12
7 9 13 14
1 1 :l 1 1 [l 1 :n 1 1
935 943 i 945 953 955 103:i 1035 101-3
9 | 13| 14 |

_______________

________

Fig. 3: System with two channels

4 Simulation of Queueing Processes
As, in practice, some assumptions may not be
satisfied, particularly the Poisson (Markov) process
properties of stationarity and the independence of
increases, such as the number of clients in shops and
railway stations substantially changing during the
daytime, the formulas that we have derived, may not
be entirely accurate. However, queueing systems
can also be studied by Monte Carlo simulations,
which generate random numbers representing the
moment of the requirements entering into the
system and the service time.

In Fig. 1, a queuing system with two service
channels, 15 requirements, and the FIFO queue type
is considered. We can see that for 2+4=6 minutes
from total 70 minutes there is no requirement in the
system, that means
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(9%,9%) (9%, 9%y 244 6

Po = 00 10 —=0,086 sums up the results of the analytical formulas and
(977,1077) 0 70 simulations.
1= + —+H&—requirement arrival time
<900 ’ 1010> 60 — —&—requirement service time T T T
—#— requirement waiting time for senice | ! : :
n <928,93O>+<934,937> _ 3+5+1+2+3 _E_O 2 sl reguirementﬁnishiggtime
; _<910,911>+<919,923>+<924,928>+<937,938> . a0l
2 (9% 1010y =
<900 , 1010> 20k
:1+4+4+1+7+1+9 :2:0.3857
70 70
(9,9 1 (9%, 9%) + (9%, 0%) + (9%, 0%7) DR Y
Ps = (9% 1010y - .
' Fig. 4: Simulation of the M/M/n/n/o system for
_8+3+2+1 14 ., J=45, 1=18, n=3, and 45 requirements.
70 70
Ps = <900 1010> = Analytical ~ Simulation results
’ evaluation  number of requirements
_1+3+4 8 113 mean values
70 70 50 200 500
9% 9%y 1 E(Ts)-E(T;) 3.33333 3.64353 3.5118  3.45478
Ps =~ %0 om0, 79 20143 E(Ty) 4.68165 3.06941 4.17567 5.21177
(97,107 o CE(TY) 801498 671203 7.68747 8.66655
Now, from these estimations, characteristics E(N;) 6.01124 5.09125 5.62803 6.23332
(57)-(61) may be computed. E(Ny) 3.51124 2.30994 3.05703 3.74851
In [5], the M/M/n/n/o/FIFO system was E(N)—E(T) 2.5 2.78131 257101 2.48481

implemented in MATLAB using simulation data
from a supermarket.

It makes it possible to enter A (mean intensity of
the input), x (mean service intensity), the number of
service lines n (then it is checked if A/nu<1), and
the number of requirements. For these data, the
probabilities pc(t) and the above-mentioned
characteristics are computed.

To understand the behaviour of the system, the
program also offers graphical output of simulations.
In Fig. 3, four graphs are shown for a system with
three lines, which show requirement arrival times,
requirement service times, requirement waiting
times for service and finishing times of services for
these requirements.

Now we compare the analytical solution with the
values obtained by simulation for different numbers
of requirements. In the analytical part, we use
formulas (8), (9) and (10), and the corresponding
characteristics (11), etc. Simulations were run for
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50, 200, and 500 requirements (clients). Table 1

185

Table 1: A comparison of analytical and simulation
results

We can see that, if the number of requirements
increases, then the difference between the analytical
and the simulation results decreases. For 50
requirements, the difference is about 12%, but for
500 requirements, only 5%. Based on these
achievements, we can conclude that the computer
implementation of the simulation model reasonably
approximates the M/M/n/n/eo/FIFO system.

5 Conclusion

This paper describes an approach to modelling a
gueuing system with the use of Markov process
properties and, for M/M/1/1/0/FIFO and
M/M/n/n/oo/FIFO systems, derives their
characteristics in detail. These derivations are based
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on the assumptions of stationarity, regularity, and
independence of Markov processes.

In real situations, some of the assumptions may
not be satisfied, particularly the stationarity and the
independence of increases, or even the distribution
of stochastic variables may not be known at all. For
these reasons, the calculations of transition
probabilities that do not take this fact into account
may give imprecise results.

Therefore, we propose a simulation approach, a
strategy of requirement processing implemented in
MATLAB based on the number of service lines, and
a way of computing the characteristics from time
intervals with the same number of requirements.
However, the approximation of a theoretical model
by the simulation model using real or randomly
generated data depends on the number of
requirements (and, therefore, on the time horizon
length of the whole processing). The higher the
number of requirements, the more the simulation
results match the theoretical ones.
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