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Abstract: - This paper is concerned with queueing systems showing how to derive their characteristics 
if the requirement arrivals correspond to a Poisson process and the service times have the exponential 
distribution. However, the requirements of stationarity, regularity, and independence of increases 
needed to model these processes by Markov chains and to define the transition probabilities may not 
be satisfied, or no information may be available on such parameters. Using randomly generated data, 
we propose a strategy of processing the requirements in multichannel systems and a way of evaluating 
the probabilities necessary to express the characteristics of the systems comparing these results with 
the theoretical ones. 
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1 Introduction 
The Danish mathematician A. K. Erlang formulated 
the fundamentals of the queueing theory about 
hundred years ago, the further development of the 
theory is mainly associated with the Russian 
mathematician A. N. Kolmogorov, but its current 
classification was proposed by the English 
mathematician D. G. Kendall. All details may be 
found, e.g., in [1], [2], [3], [4], [6], [7].  

Generally, at random moments, customers 
(requirements) enter the system and require 
servicing. Service options may be limited, e.g., the 
number of service channels (or service lines). If at 
least one serving line is empty, the demand entering 
the system is immediately processed. However, the 
service time is also random in nature because the 
performance requirements may vary. If all service 
lines are busy, then the requirements (customers) 
must wait for their turn in a queue for the processing 
of previous requirements, or be rejected (e.g. a 
telephone call). 

Service lines are frequently arranged in parallel, 
e.g., at the hairdresser's where customers waiting for 
a haircut are served by several stylists, or at a gas 
station, where motorists call at several stands of 
fuel. However, there is a serial configuration of the 
queue system.   
 

 
1.1 Classification of Queueing Systems 
The queue is usually understood in the usual FIFO 
sense – first in, first out), but a LIFO operation (last 
in, first out) is also possible, which is also referred 
to as a LCFS (last come, first served) strategy.  

Besides the FIFO and LIFO service, we can also 
meet random selection of requirements from the 
queue to the service system (SIRO - selection in 
random order) and service managed by priority 
requirements (PRI - Priority).  

The queue length may be limited by rejecting 
additional requirements if a certain (predefined) 
number of requirements is achieved, such as the 
number of reservations for the book in a library that 
is currently checked out or (virtually) unlimited.  

The requirements in the queue may have limited 
or unlimited patience. In the case of unlimited 
patience, requirements wait for their turn while in, a 
system with limited patience entering the queue 
significantly depends on the queue length. Instead of 
the queue length the concept of system capacity 
may also be used, which means the maximum 
number of requirements that may be present in the 
system.  

In 1951, Kendall proposed a classification based 
on three main aspects in the form A/B/C, where 
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Here, we restrict our considerations on systems 

of the form A/B/C/D/E/F, where 
A characterises the probability distribution of 

random variable period (interval) between the 
requirement arrivals to the system,  

B the probability distribution of random variable 
service time of a requirement,  

C  is the number of parallel service channels, in the 
case of "unrestricted" (i.e. very large) number of 
channels is usual to express the parameter C by 
∞. 
As already mentioned, the system can be 

characterised by a larger number of features, so 
Kendall classification was further extended to the 
form 

   A/B/C/D/E/F, 
where the meanings of the symbols D, E and F are 
as follows: 
D integer indicating the maximum number of 

requirements in the system (i.e. the capacity of 
the system), unless explicitly restricted, 
expressed by ∞,  

E integer expressing the maximum number of 
requirements in the input stream (or in a resource 
requirements), if it is unlimited, ∞ is used, 

F  queue type (FIFO/LIFO/SIRO/PRI).     
Let us first assume that parameters A and B 

equal to M, i.e. intervals between the arrivals of 
requirements and requirement-service-time are 
mutually stochastically independent and have 
exponential distribution, this means that the input 
stream represents a Poisson (Markov) process, that 
satisfies the following properties: 

(1) Stationarity (homogeneity over time) - the 
number of events in equally long time intervals is 
constant.  

(2) Regularity - the probability of more than one 
event at a sufficiently small interval of length ∆t is 
negligibly small. This means that in, the interval 
(t, t+∆t), there is either exactly one event with 
probability λ ∆t or no event with probability 1–λ ∆t. 
In other words, in a Poisson process, the only 
system transition to the next "higher" state is 
possible or the system remains in the same 
condition.  

(3) Independence of increases - the number of 
events that occur in one time interval does not 
depend on the number of events in other intervals. 
 
 
2 The M/M/1/1/∞/FIFO System 

Consider first the situation at the input separately 
from the service process and introduce the random 
variable number of requests that come into the 
system during the interval 〈t0, t0+∆t〉, where 
∆t ∈ (0, ∞).  Due to the stacionarity of the Poisson 
process, number of requests does not depend on the 
choice of initial time t0 and the importance it has 
only considered the length of the interval ∆t. 

Let pk(t) denotes the probability that at time t just 
k the requirements are in the system. The regularity 
of the Poisson process implies that the probability 
that at time t+∆t  k requirements will be in the 
system is equal to the probability that at time t  k–1 
requirements were in the system and during ∆t one 
requirement came with probability λ ∆t or at time t  
k requirements were in the system and during ∆t 
with probability 1–λ ∆t any new requirement did not 
come. From the rules for calculating probabilities of 
conjunction and disjunction of independent events 
then we get the equation: 

 pk(t+∆t) = pk–1(t). λ ∆t + pk(t).(1–λ ∆t), k = 1,2, …(1) 

The probability that at time t+∆t no requirement 
is in the system is given by the probability that there 
was no requirement, nor during time ∆t entered, is 

 p0(t+∆t) = p0(t).(1–λ ∆t)  (2) 

After the easy adjustment of equations (1) and 
(2) we get equations (3) and (4). 

 
..,.2,1

),()(
)()(

1

=

−=
∆

−∆+
−

k

tptp
t

tpttp
kk

kk λλ
 (3)  

 )(
)()(

0
00 tp

t
tpttp

λ−=
∆

−∆+
 (4)  

Make now limit transition in equations (3) and 
(4) for ∆t → 0. We get: 
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The expressions on the left side of the previous 
two equations are derivatives of the functions pk(t)  
and p0(t) at point t, i.e. pk’(t) and p0’(t), while their 
right sides the limit transition has no effect. Hence 
we obtain recurrence equations (5) (6) 
 ..,.2,1),()()(' 1 =−= − ktptptp kkk λλ  (5) 
 )()(' 00 tptp λ−=  (6) 

These recurrence equations are a set of infinitely 
many ordinary differential equations of the first 
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order. To solve them we need to know the initial 
conditions. However, it is clear that at time 0 no 
requirements are in the system, and therefore 
 ..,.2,1,0)0( == kp k  (7) 
 1)0(0 =p  (8) 

From the theory of ordinary differential 
equations is known that the solution to the system of 
equations (5) and (6) with initial conditions (7) and 
(8) is a system functions 

 ( ) ..,.2,1,0,
!

)( == − k
k
tetp

k
t

k
λλ  (9) 

Specially for k=0 we get 
 tetp λ−=)(0  (10) 
 

 

Fig. 1: Graphs of functions pk(t) for k=0,1, … , 5 
and λ=2. 

 
From equation (9) we can see that in the M/M/1 

system, the random variable number of requests that 
come into the system during a time interval of 
length t has a Poisson distribution with parameter 
λ t. 

The mean of this random variable is λ t  and 
specially for t=1 the mean value of the random 
variable number of requests that come into the 
system per unit of time is equal to λ. We say that λ 
is the mean intensity of the input or shortly the input 
intensity and it expresses the average number of 
requests that came into the system per unit time. 

   We show further that the random variable 
interval between arrivals of requests has an 
exponential distribution. Denote the variable T. 
Then the probability that after a request no further 
requirement for the entire time interval t entered into 
the system is equal to p0(t), and therefore, according 
to equation (10) 
         tetptTP λ−==> )()( 0  (11) 

From here we obtain the distribution function 
F(t) of the exponential distribution with parameter 
λ. 

      tetTPtTPtF λ−−=>−=≤= 1)(1)()(  (12) 
The mean value of the random variable T 

representing the average time between two 
consecutive requests is 
 E(T)=1/λ  (13) 

Analogously, we can now examine the service 
process. We assume that the random variable 
service time of one requirement (shortly service 
time) has an exponential distribution. Denote the 
distribution of this parameter µ, generally µ ≠ λ. 
Mean value of the random variable service time TO 
is 
 E(TO)=1/µ  (14) 
and parameter µ  indicates the mean number of 
requests served per time unit of work time channel, 
briefly mean service intensity, service intensity 
shortly. 

    To derive the characteristics of the system is 
more convenient to describe the system activity by a 
graph of system transitions. The nodes of the graph 
represent states and directed edges transitions from 
one state to another, and evaluation of these edges is 
described by the probability of transition from one 
state to another. State Sn for fixed t∈〈0, ∞), thus 
more exactly Sn(t)  is a random variable and 
indicates that at time t n requests are in the system. 
If exactly n requirements, n ≥ 1, are in  the system 
M/M/1 / ∞ / ∞ / FIFO, then one is operating in a 
single line system (service channel) operated and 
the remaining n−1 are waiting in the queue. 
Transitions between states which differ in a number 
of requirements in a system can be understood as a 
process of birth and death, where the request birth 
represents request entry into the system and death 
corresponds to request leaving from the system after 
finishing its operation. For given input assumptions 
the Poisson stream of requests with a parameter λ 
and an exponential distribution of service time with 
parameter µ it is possible the queueing system 
behaviour describe by the Markov processes. 

Due to the regularity, have sense only transition 
probabilities P(Si → Sj), where either i=j or i and j 
differ by 1 For example transition probability 
P(S0 → S0) corresponds to the probability of the 
event that during the time interval of length ∆t no 
requirement enters the system, transition probability 
P(Sk → Sk−1), k≥1, is the probability of the event that 
during the time interval of length ∆t no requirement 
enters the system and at the same time one request 
will be served and leaves the system, transition 
probability P(Sk → Sk), k≥1, is equal to the 
probability of the event that during the time interval 
of length ∆t no requirement enters the system and 
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also no requirement enters the system leaves the 
system or during this interval one requirement 
enters and one requirement will be served and  one 
requirement leaves the system. 

From the regularity property and the method of 
calculating the total probability resulting from the 
partial probabilities of conjunction and disjunction 
of independent events we get transition 
probabilities, in the neglect of the powers of the 
interval length ∆t, as follows:  
 P(S0 → S0) = 1−λ ∆t (15) 
 P(S0 → S1) = λ ∆t  (16) 
 P(Sk → Sk−1) = (1−λ ∆t) µ ∆t = µ ∆t− λ µ ∆t2   

 µ ∆t (17) 
 P(Sk → Sk) = (1−λ ∆t) (1−µ ∆t) + λ ∆t µ ∆t =  
 =1−µ ∆t− λ ∆t + 2λ µ ∆t2  1−(λ+µ) ∆t (18) 

 P(Sk → Sk+1) = λ ∆t (1−µ ∆t) = λ ∆t − λ µ ∆t2   

 λ ∆t (19) 
Equations (17), (18) and (19) are satisfied for k = 

1,2, … 
Graph of M/M/1/∞/∞/FIFO system transitions is 

shown in Fig. 2. For simplicity, nodes are indicated 
only by numbers instead of symbols Si. Instead of 
the general denotations of transition probabilities, 
we write the specific expressions determined by 
equations (15) - (19). 

 

 

Fig. 2: Graph of M/M/1 / ∞ / ∞ / FIFO system 
transitions. 
 

Using the transition probabilities between states 
we can determine the probabilities pk(t) indicating 
that at time t exactly k are in the system, however 
not separately for entries and services, but together 

 p0(t+∆t) = P(S0 → S0) + P(S1 → S0) =  
 =p0(t).(1–λ ∆t) + p1(t).µ ∆t (20)  

pk(t+∆t) = P(S k−1 → Sk) + P(Sk → Sk) + P(S k+1 → Sk) 
= pk−1(t). λ ∆t + pk(t).[1−(λ+µ) ∆t] + pk+1(t). µ ∆t,    
 k = 1,2, … (21)  

After the easy modification of the equations (20) 
and (21) we obtain equations (22) and (23) 
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Make now the limit transition for ∆t → 0 in the 
equations (22) and (23). We get: 
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The expressions on the left side of the previous 
two equations are derivatives of the functions p0(t) 
and pk(t) at point t, i.e. p0’(t) and pk’(t), while on 
their right sides the limit transition does not have 
any effect. Hence we get recurrence equations (24) 
(25) as follows: 

These recurrence equations are a set of infinitely 
many ordinary differential equations of the first 
order. To address them we need to know the initial 
conditions, which are given by the state of a system 
at time t0=0. If  there are k0 requirements in a system 
at time t0=0, then the initial conditions are given by 
(26) and (27) 
 1)0(

0
=kp  (26) 

 0,1,0)0( kkkp k ≠≥=  (27) 
Hereafter, we assume that λ < µ, i.e. λ/µ < 1. 

Denote the ratio λ/µ   by ψ symbol. We call it the 
intensity of the system load. Condition (28)  

 1<=
µ
λψ  (28) 

is a necessary and sufficient condition for not queue 
growing beyond all bounds. This condition also 
ensures that after a sufficiently long time since the 
opening of a queueing system its situation stabilizes, 
i.e. there are limits 
 ,1,0,)(lim ==

∞→
kptp kk

t
, (29) 

and then after a sufficiently long time since the 
opening of a queueing system probabilities pk(t)  can 
be considered as constant, i.e. 

 pk(t) = pk = const (30) 
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Since the derivatives of constants are zero, we 
get from this fact and from equations (24) and (25) 
infinite set of linear algebraic equations determined 
by (31) and (32). 
 100 pp µλ +−=  (31) 
 ..,.2,1,)(0 11 =++−= +− kppp kkk µµλλ  (32)  

It is clear that (33) is satisfied 
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We express p1 from equation (31) and get 
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and from (32) we express pk for k ≥ 2. For k=1 we 
get from (32)  
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and generally for k=1,2, … equation (36) is satisfied 
 0pp k

k ψ=  (36) 
Now p0 remains to be determined. To do this, we 

use equations (33) and (36). 

 ∑ ∑∑
∞

=

∞

=

∞

=
===

0 0
0

0
0 1)(

k k

k

k

k
k ppp ψψ  (37) 

Since the sum in (37) is a geometric series with 
quotient ψ, first element of ψ 

0=1 and the sum 

ψ−1
1 , we get from (37) 1

1
1

0 =
−ψ

p , and thus 

 ψ−= 10p   (38) 
Using (38) equation (36) can be expressed as 

 ,...2,1),1( =−= kp k
k ψψ  (39) 

These equations allow derive other important 
characteristics of the M/M/1/∞/∞ /FIFO system, 
which include: 

1. Mean number of requirements in the system: 
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2. Mean number of jobs in the queue (mean queue 
length): 
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3. Mean time spent by a job in the system: 
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4. Mean waiting time of a job in the queue: 
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5. Mean service time: 

 
µ
1)( =OTE  (44) 

6. Factor of service channel idle time 
 K0 = p0 = 1−ψ (45) 

7. Factor of service channel load  
 K1 = 1− p0 = 1−(1−ψ) = ψ  (46) 
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The equations (40)-(43) show that in the system 
M/M/1/∞ /∞/FIFO, λ = µ, respectively ψ  = 1 cannot 
by satisfied, because this would result in the growth 
of the parameters beyond all limits. 
 
 
3 The M/M/n/n/∞/FIFO System 
Using similar considerations and denotations as in 
the previous section we get  
 P(Sk−1 → Sk) = λ ∆t,  k = 1, … , n (47) 
 P(Sk → Sk) = (1−λ ∆t) (1− k µ ∆t)  ≈  
 ≈ 1− (λ + k µ) ∆t, k = 0, …  (48) 
 P(Sk+1 → Sk) = (k+1) µ ∆t,  k = 0, … , n−1 (49) 

Let pk(t) denote the probability that, at time t, just 
k requirements are in the system. Using the previous 
equations, we can calculate p0(t), p1(t), … , pk(t), …, 
pn(t). 
 p0(t+∆t) = P(S0 → S0) + P(S1 → S0) =  
 = p0(t).(1–λ ∆t) + p1(t).µ ∆t (50)  
 p1(t+∆t) = P(S 0 → S1) + P(S1 → S1) + P(S 2 → S1) =  
 = p0(t). λ ∆t + p1(t).[1−(λ+µ) ∆t] + p2(t). 2µ ∆t  
  (51)  
 …  
pk(t+∆t) = P(S k−1 → Sk) + P(Sk → Sk) +  P(S k+1 → Sk)  
 = pk−1(t). λ ∆t + pk(t).[1−(λ+kµ) ∆t] +  
 + pk+1(t). (k+1) µ ∆t,    k=2, … , n−1 (52)  

However, if all channels are occupied and the 
queue is nonempty, the last equation changes to (7).  
 pk(t+∆t) = pk−1(t). λ ∆t + pk(t).[1−(λ+nµ) ∆t] +  
 + pk+1(t). nµ ∆t,    k≥n (53)  

After easy simplification of equations (50), (52) 
and (53), a limit transition for ∆t → 0 we get a set of 
first-order ordinary differential equations. Since the 
initial conditions may also be simply expressed, we 
can derive that 
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These equations may now be used to derive other 
important characteristics of the M/M/n/n/∞ /FIFO 
system, which include: 

1. Mean number of requirements in the system: 
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2. Mean number of requirements in the queue (mean 
queue length): 
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3. Mean number of free service channels: 
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4. Mean time spent by a requirement in the system: 
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5. Mean waiting time of a requirement in the queue: 
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Fig. 3: System with two channels 
 
 
4 Simulation of Queueing Processes 
As, in practice, some assumptions may not be 
satisfied, particularly the Poisson (Markov) process 
properties of stationarity and the independence of 
increases, such as the number of clients in shops and 
railway stations substantially changing during the 
daytime, the formulas that we have derived, may not 
be entirely accurate. However, queueing systems 
can also be studied by Monte Carlo simulations, 
which generate random numbers representing the 
moment of the requirements entering into the 
system and the service time. 

In Fig. 1, a queuing system with two service 
channels, 15 requirements, and the FIFO queue type 
is considered. We can see that for 2+4=6 minutes 
from total 70 minutes there is no requirement in the 
system, that means 
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Now, from these estimations, characteristics 
(57)-(61) may be computed.  

In [5], the M/M/n/n/∞/FIFO system was 
implemented in MATLAB using simulation data 
from a supermarket.  

It makes it possible to enter λ (mean intensity of 
the input), µ (mean service intensity), the number of 
service lines n (then it is checked if λ/nµ < 1), and 
the number of requirements. For these data, the 
probabilities pk(t) and the above-mentioned 
characteristics are computed.   

To understand the behaviour of the system, the 
program also offers graphical output of simulations. 
In Fig. 3, four graphs are shown for a system with 
three lines, which show requirement arrival times, 
requirement service times, requirement waiting 
times for service and finishing times of services for 
these requirements. 

Now we compare the analytical solution with the 
values obtained by simulation for different numbers 
of requirements. In the analytical part, we use 
formulas (8), (9) and (10), and the corresponding 
characteristics (11), etc. Simulations were run for 

50, 200, and 500 requirements (clients). Table 1 
sums up the results of the analytical formulas and 
simulations.  

 

 
Fig. 4: Simulation of the M/M/n/n/∞ system for 
λ=45, µ=18, n=3, and 45 requirements.  

 
 

 Analytical 
evaluation 
mean values 

Simulation results 
number of requirements 

  50 200 500 
E(Ts)−E(Tf) 3.33333 3.64353 3.5118 3.45478 
E(Tf) 4.68165 3.06941 4.17567 5.21177 
E(Ts) 8.01498 6.71293 7.68747 8.66655 
E(Ns) 6.01124 5.09125 5.62803 6.23332 
E(Nf) 3.51124 2.30994 3.05703 3.74851 
E(Ns)−E(Tf) 2.5 2.78131 2.57101 2.48481 

 
Table 1: A comparison of analytical and simulation 
results 

 
We can see that, if the number of requirements 

increases, then the difference between the analytical 
and the simulation results decreases. For 50 
requirements, the difference is about 12%, but for 
500 requirements, only 5%. Based on these 
achievements, we can conclude that the computer 
implementation of the simulation model reasonably 
approximates the M/M/n/n/∞/FIFO system. 

 
 

5 Conclusion 
This paper describes an approach to modelling a 
queuing system with the use of Markov process 
properties and, for M/M/1/1/∞/FIFO and 
M/M/n/n/∞/FIFO systems, derives their 
characteristics in detail. These derivations are based 
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on the assumptions of stationarity, regularity, and 
independence of Markov processes.  

In real situations, some of the assumptions may 
not be satisfied, particularly the stationarity and the 
independence of increases, or even the distribution 
of stochastic variables may not be known at all. For 
these reasons, the calculations of transition 
probabilities that do not take this fact into account 
may give imprecise results.  

Therefore, we propose a simulation approach, a 
strategy of requirement processing implemented in 
MATLAB based on the number of service lines, and 
a way of computing the characteristics from time 
intervals with the same number of requirements. 
However, the approximation of a theoretical model 
by the simulation model using real or randomly 
generated data depends on the number of 
requirements (and, therefore, on the time horizon 
length of the whole processing). The higher the 
number of requirements, the more the simulation 
results match the theoretical ones. 
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